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The factitive role of Mycobacterium avium ss. paratuberculosis (MAP) in Crohn’s disease
has been debated for more than a century. The controversy is due to the fact that Crohn’s
disease is so similar to a disease of MAP-infected ruminant animals, Johne’s disease; and,
though MAP can be readily detected in the infected ruminants, it is much more difficult
to detect in humans. Molecular techniques that can detect MAP in pathologic Crohn’s
specimens as well as dedicated specialty labs successful in culturing MAP from Crohn’s
patients have provided strong argument for MAP’s role in Crohn’s disease. Perhaps more
incriminating for MAP as a zoonotic agent is the increasing number of diseases with which
MAP has been related: Blau syndrome, type 1 diabetes, Hashimoto thyroiditis, and multiple
sclerosis. In this article, we debate about genetic susceptibility to mycobacterial infection
and human exposure to MAP; moreover, it suggests that molecular mimicry between pro-
tein epitopes of MAP and human proteins is a likely bridge between infection and these
autoimmune disorders.
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INTRODUCTION
In 1913, a concise description of what today is known as Crohn’s
disease was offered by Scottish surgeon Kennedy Dalziel (1).
Twenty years earlier, in 1895, German veterinary Johne H. A.
described the cause of an incurable profuse diarrhea in cattle.
He noted acid-fast bacteria (most often indicating the organ-
ism that causes tuberculosis) that, when transferred to a guinea
pig, did not cause tuberculosis (2). Johne first labeled the dis-
ease “pseudotuberculosis” and it eventually became known as
paratuberculosis.

Infected cow’s intestines had the same cobblestone aspect of
Dalziel’s patient and microscopically, the patient’s and cattle’s dis-
eased intestines were so alike that Dalziel wrote that the tissue
characteristics were:

. . . so similar as to justify a proposition that the diseases may
be the same (1).

He hypothesized that the disease in cattle and the disease in peo-
ple shared the same cause. The disease in humans was later named
after Dr. Crohn who described a series of patients in 1932 (3).

The heart of this 100-year controversy revolves around the
fact that the usual diagnostic techniques to detect bacteria are
commonly inefficacious to detect Mycobacterium avium ss. paratu-
berculosis (MAP) in humans. A short explanation is that it is just
very difficult to grow MAP from humans; and, MAP exists with
a modified cell wall – the component of the bacterium that takes
up the characteristic acid stain. In this state, the bacterium is no
longer “acid fast” and cannot be detected microscopically. Recent
work has identified the capacity of MAP to undergo a morphologic

change to become spore-like. The spore morphotype survives heat
and other stressors and may lead to an increased persistence in
hosts and the environment (4).

Understanding the difficulty in detection and appreciating the
work of specialty labs that have shown MAP bacteremia in Crohn’s
disease patients, there has been a warming to the association of
MAP in Crohn’s (5).

MYCOBACTERIUM AVIUM ss. PARATUBERCULOSIS
Mycobacterium avium ss. paratuberculosis is an acid-fast stain-
ing small rod-shaped bacterium (6, 7). As with members of the
Mycobacteriaceae genus, its cell wall structure rich in complex
lipids is unique. The tough and peculiar cell wall of mycobacteria
is, in large part, responsible for the persistence of these bacteria,
both in the environment and inside the host. Paradoxically, the
pathogenic potential of mycobacteria increases as their growth
rate decrease. In fact, slow-growing mycobacteria are more path-
ogenic than fast growing mycobacteria. Except the uncultivable
Mycobacterium leprae (the cause of leprosy in humans), MAP
has the slowest growth rate among harmful mycobacteria. After
inoculum of infected samples from infected animals and incu-
bated under optimal conditions, MAP colonies usually appear not
before 3 months or more (8).

MAP AND HUMAN EXPOSURE
Mycobacterium avium ss. paratuberculosis can be found in pas-
teurized milk (9, 10), milk powder for children (11), surface water
(12–14), soil (12), cow manure that contaminates the soil and
surface water, moreover cow manure is usually applied as fertil-
izer in different crops (15) and supply of drinking water (16) all

www.frontiersin.org March 2015 | Volume 6 | Article 96 | 1

http://www.frontiersin.org/Immunology
http://www.frontiersin.org/Immunology/editorialboard
http://www.frontiersin.org/Immunology/editorialboard
http://www.frontiersin.org/Immunology/editorialboard
http://www.frontiersin.org/Immunology/about
http://www.frontiersin.org/Journal/10.3389/fimmu.2015.00096/abstract
http://www.frontiersin.org/Journal/10.3389/fimmu.2015.00096/abstract
http://www.frontiersin.org/people/u/196253
http://loop.frontiersin.org/people/194235/overview
mailto:sechila@uniss.it
http://www.frontiersin.org
http://www.frontiersin.org/Mucosal_Immunity/archive


Sechi and Dow MAP beyond Crohn’s disease

contributing to human exposure. Soil and plants in grazing areas
retain MAP; its DNA can be detected in the upper greens of plants,
their roots and in the soil below the roots to a depth of 80 cm (17,
18). MAP DNA was detected in over 80% of domestic water sam-
ples in Ohio (19). Chlorination and filtration may help to survive
mycobacteria rather than eliminate these organisms by killing off
their competitors (20). Moreover, mycobacteria organisms have
been reported on tap water pipes (21) in biofilms (22) and plas-
tic water bottles (23). One estimate is that mycobacteria could be
present in drinking water in “massive numbers,” on the amount of
up to 700,000 or 7 × 105 organisms per liter of water (22). A recent
study reported testing infant formula for MAP in 65 samples from
18 countries: >40% tested positive for viable MAP (24).

MAP AND HUMAN DISEASES
In addition to Crohn’s, MAP has been associated with multiple
diseases: sarcoidosis and Blau syndrome (25), type 1 diabetes (26–
32), Hashimoto’s thyroiditis (33–36), and multiple sclerosis (MS)
(37–49). In autoimmune diabetes, thyroiditis, and MS, MAP is
thought to induce pathology due to molecular mimicry between
protein elements of itself and the targeted organ elements of the
host, e.g., MAP 3865c and Znt8 in autoimmune (type 1) diabetes
and thyroiditis (31, 35, 36). Figure 1 shows how MAP may trigger
autoimmune diseases.

If humans are so readily exposed to MAP, why is there not per-
vasive Crohn’s disease and the other diseases mentioned in this
article?

GENETICS
CARD15
A good example about the interaction between the genetic
susceptibility and microbial infection can be found in Crohn’s

and Blau syndrome (50), both having polymorphisms within the
CARD15 gene.

The gene was originally referred as the NOD2 gene and link-
age studies have placed it on chromosome 16; now it is known as
the CARD15 gene (51). The CARD15 gene is part of the ancestral
innate immune system that recognizes bacteria peptidoglycan in
particular mycobacterial glycolylated form of muramyl dipeptide
MDP (52–54).

CARD15, BLAU SYNDROME, AND CROHN’S DISEASE
Insights into the consequence of genetic susceptibility to MAP
infection may be observed in the rare inflammatory disease, Blau
syndrome. This granulomatous inflammatory disorder is charac-
terized by uveitis, arthritis, and dermatitis (50). Although rare,
Blau syndrome has been of interest in recent medical literature
because of the inherited or de novo mutation within the CARD15
gene, the same gene associated with Crohn’s susceptibility (55,
56). However, Blau syndrome susceptibility component of the
CARD15 gene is located at the nucleotide binding site domain
(55, 56) whereas the Crohn’s susceptibility can be found at the
N-terminal leucine-rich repeat domain (57–59).

Blau syndrome shares the same clinical characteristics of juve-
nile sarcoidosis; in fact, new CARD15 mutations are consistently
found in cases of sporadic juvenile sarcoidosis – Blau syndrome
(60, 61). For these reasons – the clinical appearance of sar-
coidosis and a shared genetic susceptibility with Crohn’s – it
was proposed that MAP could have a role in Blau syndrome.
A series of Blau tissues comprised of skin, synovial samples as
well as Blau graulomas of the liver and kidney were tested for the
presence of MAP. Six tissues of five patients representing three
different families were all found to have MAP present in the tissue
granulomas (25).

FIGURE 1 |The increased spread of Mycobacterium avium ss.
paratuberculosis associated with genetic susceptibility to intracellular
pathogens such as MAP (e.g., CARD15, SLC11A1) is leading to an
increase of autoimmune diseases and inflammatory diseases such as

type 1 diabetes (T1D), Hashimoto thyroiditis (HT), multiple sclerosis
(MS), Crohn’s disease, Blau syndrome, etc. Some of the MAP proteins
involved are indicated (in black) with the human homologous target proteins
(in white).
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The proposed etiopathology is that following MAP exposure,
an individual genetically susceptible with mutations within the
nucleotide binding domain of CARD15 will exhibit Blau syn-
drome whereas if the mutations are within the leucine-rich-repeat
domain of the same gene, they may exhibit Crohn’s disease. More-
over, it has been reported that CARD15 defects of the leucine-
rich-repeat domain, are associated in an aggressive phenotype of
Crohn’s disease (62). Recent work has reviewed the susceptibility
genes associated with Crohn’s (63).

SLC11A1
An additional gene linked with Crohn’s susceptibility is the
solute carrier 11a1 (SLC11A1) gene (64). SLC11A1 was previously
identified as natural resistance-associated macrophage protein 1
(NRAMP1) (65). Polymorphisms within this gene and its pro-
moter are recognized as having a role in the susceptibility of
humans and animals to a number of infections, in particular
mycobacterial infections, and it has been related to the suscep-
tibility to autoimmune and inflammatory disease as well (64, 65).
The SLC11A1 gene, located on chromosome 2q35, is around 14 kb
in length. It encodes an integral membrane protein of 550 amino
acids that is localized within the acidic endosomal and lysosomal
compartment of resting macrophages (65).

The product of the SLC11A1 gene modulates the cellular envi-
ronment in response to activation by intracellular pathogens
by acidifying the phagosome thus killing the pathogen (66).
As such, it plays a role in host innate immunity (67). Muta-
tions of SLC11A1 may impair phagosome acidification yield-
ing a permissive environment for the persistence of intracellular
bacteria (68).

SLC11A1 IN INFECTIOUS AND AUTOIMMUNE DISEASE
Sarcoidosis, an other systemic disease associated with MAP, has
been associated with polymorphisms of the SLC11A1 gene (69).
Susceptibility to mycobacterial diseases, leprosy, and Buruli’s ulcer
were also associated with polymorphism of the SLC11A1 gene
(70). Similar polymorphisms have been associated with Johne’s
disease (paratuberculosis) in cattle (71), goats (72), and sheep
(73). A SLC11A1 defect mouse was created by researchers at the
Belgium Pasteur Institute to develop a murine model for MAP
infection (74).

Due to the capability of SLC11A1 to modulate innate immunity,
it is not surprising that the relationship between polymorphisms
in SLC11A1 and a number of mycobacterial as well as autoimmune
diseases has been explored (75). In addition to leprosy (76) and
tuberculosis (77), an association is found in rheumatoid arthritis
(78), MS (39, 79), inflammatory bowel disease (80–82), and type
1 diabetes – all diseases associated with MAP (83, 84).

MOLECULAR MIMICRY
Molecular mimicry by a microorganisms has been hypothesized to
initiate and exacerbate an autoimmune response through sequence
or structural similarities with self-antigens (85, 86). Rheumatic
fever is one of the best examples for molecular mimicry between
group A streptococcus and host antigens leading to the glomeru-
lonephritis and rheumatic heart disease (87, 88). The development
of post-streptococcal sequelae is characterized by damage to the

heart, joints, and the central nervous system (Sydenham’s chorea).
Damage of the heart is the most critical effect and is present in
30–45% of the cases – mostly causing damage to the heart valves.

MAP AND TYPE 1 DIABETES
Type 1 diabetes mellitus (T1DM) is an autoimmune disease man-
ifest by progressive T cell-mediated autoimmune destruction of
insulin-producing beta cells in the pancreatic islets of Langher-
ans (89). Sechi in 2008 found the DNA of MAP in the blood
of autoimmune (type 1) patients (32) but not non-autoimmune
(type 2) diabetes (27, 28). Sechi also found an association of poly-
morphisms of the SLC11a1 gene and MAP in T1DM patients
(59, 64, 82).

While it may be intuitive to envision an occult presence of
MAP as an infective agent producing a granulomatous lesion of
Crohn’s or sarcoidosis (Table 1A); it may be more difficult to
assign a role for MAP in T1DM. The link connecting MAP and
T1DM is molecular mimicry: protein elements of the pathogen
“look like”elements of the host’s endocrine pancreas; and immune
responses directed at the pathogen sometimes may attack the host
(Table 1B). Childhood exposure to cows milk-based infant for-
mula is a strong risk factor for juvenile autoimmune diabetes (30)

Table 1 | (A) Map-related granulomatous diseases. (B) Map-associated

autoimmune diseases.

(A) MAP-RELATED GRANULOMATOUS DISEASES

Disease Shared genetic

susceptibility

Reference

Crohn’s CARD15, SLC11A1 (8, 51, 52, 57, 59, 62, 64)

Sarcoidosis SLC11A1 (54, 69)

Blau syndrome CARD15 (52–56, 60)

These granulomatous diseases are ones where evidence of MAP can be found in

the granuloma. CARD15, caspase recruitment domain gene 15; SLC11a1, solute

carrier 11a1 gene.

(B) MAP-ASSOCIATED AUTOIMMUNE DISEASES

Disease Mimicking elements Reference

Autoimmune

diabetes

HSP65/GAD (31, 86–88, 90–94)

MAP3865c/ZnT8 –

pancreatic

Autoimmune

thyroiditis

MAP3865c/ZnT8 – thyroid (35, 36)

Multiple

sclerosis

HSP70, MAP_2694,

MAP4027, MAP_2619c

352-61, MAP_0106c

protein 121–132

(37–49)

These autoimmune diseases have autoantibodies. There are share molecular

elements between MAP proteins and host organs. HSP65, heat shock protein

65; GAD, glutamic acid decarboxylase; MAP3865c, M. paratuberculosis protein

3865c; ZnT8, zinc transporter 8; HSP70, heat shock protein 70; MAP-0106c, M.

paratuberculosis 0106c protein (aa. 121–132); MBP85-98, myelin basic protein

(aa. 85–98).
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and, as mentioned in the “exposure to MAP” section of this paper,
viable MAP is found in infant formula (24).

The proposed links is the mimicry of mycobacterial protein
MAP3865c and the human homolog Znt8 (31, 35) along with the
heat shock protein of MAP (HSP65) and pancreatic glutamic acid
decarboxylase (GAD) (30). Different islet autoantibodies (aAbs)
may characterize the period preceding T1D clinical onset, aAbs
against islets antigens such as insulin, glutamic acid decarboxylase
(GAD65), insulinoma associated protein-2, and zinc transporter
8 (ZnT8) may be detectable for months up to years before dis-
ease onset. Sechi et al., for example, reported that anti-MAP and
anti-ZnT8 antibodies (Abs) targeting homologous membrane-
spanning sequences are cross-reactive and capable of eliciting
strong immune responses in T1D adult patients (91). One of
the sequences was also able to elicit a T cell response (95). An
association between MAP and T1D in children was demonstrated
by Cossu et al. (96), Additional evidence of the involvement of
MAP in the early phases at T1D onset appear from two studies
(91, 92) where an association between Abs positive for ZnT8 and
MAP homolog epitopes in Sardinian and Italian children at T1D
onset was demonstrated. Moreover, Sechi et al. (93) reported a
similar high antibody response against insulin epitopes and its
MAP homologous peptides in children; those both at risk for
T1D and at T1D onset. A review on the topic was previously
reported (94).

MAP AND AUTOIMMUNE THYROIDITIS
The most common autoimmune disease associated to T1D is
autoimmune thyroid disease, its frequency is estimated at >90%
among patients with T1D and autoimmune diseases (97). Dif-
ferent articles associate MAP to autoimmune (Hashimoto’s) thy-
roiditis (HT) (33, 34). The same molecular mimicry principle
is suggested as the link between MAP and Znt8, one of the
organ-specific autoantigens of thyroiditis (33–36). Though ZnT8
is primarily expressed in pancreatic islet cells, it is also expressed
in the follicular and para-follicular epithelial cells of the thyroid
gland. In view of the evidence accounting for a cross-recognition
of MAP3865c/ZnT8 homologs sequences in T1D subjects, and
applying the theory which proposes MAP as an HT environmen-
tal trigger (acting trough a molecular mimicry mechanism) (35,
36), it is natural to consider MAP for a causal role in HT. Moreover,
it has been reported that the occurrence of islet aAbs (especially
Znt8) was associated with a positive titer of thyroid peroxidase
antibodies (ATPO) in newly diagnosed adult-onset autoimmune
diabetic patients (98).

HEAT SHOCK PROTEINS
Heat shock proteins (HSPs) are expressed at high level in response
to environmental stress. They stabilize proteins and are involved
in the folding of denatured proteins helping cells survive stress-
ful conditions and promoting recovery (99). HSPs are synthe-
sized to respond to the presence of invading pathogens. However,
pathogens may also produce their HSPs. The increased expres-
sion of both self and infective stress proteins and the extensive
sequence homology between microbial and human HSP (50–
80% amino acid homology of mycobacterial HSP65 and human
HSP60) have led to the concept that HSPs are involved in the

etiology and pathogenesis of many immune-mediated disorders
(100). Antibodies to mycobacterial HSPs have been found in
various autoimmune diseases (101). Just to mention some, the
mycobacterial 65 kDa HSP has been associated to rheumatoid
arthritis (102–104), autoimmune hepatitis (105), primary bil-
iary cirrhosis (106), and systemic sclerosis (107). HSP65 has
been reported in different vasculitis-associated systemic autoim-
mune diseases such as Kawasaki disease (108), Behcet’s disease
(109) Takayasu’s arteritis (110), moreover, Hsp70 has also been
associated with MS (90).

MAP AND MULTIPLE SCLEROSIS
Sechi et al. have published studies implicating MAP in MS (37–39,
41–49). Molecular mimicry and SLC11A1 associations are central
to this association as well (40, 41). MAP has been associated with
Epstein–Barr virus (EBV – thought to be one of the triggers of MS)
(44): peptides of each microorganism (MAP and EBV) cross react
with anti-myelin basic protein (MBP) (43) and interferon regu-
latory factor 5 (IRF5) in MS patients (48). Interferon-beta ther-
apy influence antibody response against MAP (49). An extensive
review on the topic has been previously published (46).

THE FUTURE – MAP AND HUMAN DISEASE
The role of MAP in Crohn’s disease has progressed from con-
troversial to conspicuous to compelling. The century-old striking
similarities existing between Johne’s and Crohn’s diseases on a
tissue level are now validated at cellular and molecular levels
(90). There is an increasing awareness and call for resolution
(111, 112). Improved testing strategies for ruminant herds such as
metabolomic profiling (113) will aid in the public health approach
to animal disease and sources of human exposure. On a limited
basis, Crohn’s disease has been treated successfully with antibi-
otics (114, 115). As the MAP/Crohn’s debate resolves and as more
diseases are linked to MAP, there will likely be a major shift in
the public health approach to MAP and human disease. Early
indications of such a shift are two clinical trials employing anti-
mycobaterial drugs: clarithromycin, rifabutin, and clofazimine.
One is a 60-center trial in Crohn’s disease (116) and another is
the same treatment for MS (117). Positive outcomes from efforts
like these – curing Crohn’s disease and MS with anti-mycobacterial
medication as well as prevent autoimmune diabetes and thyroidi-
tis – will further solidify the role of MAP as a zoonotic agent in
human disease and, perhaps after more than a century, will resolve
this medical controversy.

ACKNOWLEDGMENTS
The authors wish to acknowledge Magdalena Niegowska-Conforti
for creating Figure 1. The research has been possible thanks to
the following funds: Fondazione Banco di Sardegna year 2014;
Regione Autonoma della Sardegna LR7, year 2010 and Grant
supported by FISM entitled GEOEPIDEMIOLOGY OF MUL-
TIPLE SCLEROSIS: THE ENVIRONMENTAL RISK FACTORS,
Year 2012.

REFERENCES
1. Dalziel TK. Chronic interstitial enteritis. Br J Med (1913) 2:2756.
2. From history of Johne’s disease. Johne’s Information Center. (2014). Available

from: http://www.johnes.org/history/index.html

Frontiers in Immunology | Mucosal Immunity March 2015 | Volume 6 | Article 96 | 4

http://www.johnes.org/history/index.html
http://www.frontiersin.org/Mucosal_Immunity
http://www.frontiersin.org/Mucosal_Immunity/archive


Sechi and Dow MAP beyond Crohn’s disease

3. Crohn BB, Ginzburg L, Oppenheimer GD. Regional ileitis – a patho-
logic and clinical entity. JAMA (1932) 99(16):1323–9. doi:10.1001/jama.1932.
02740680019005

4. Lamont EA, Bannantine JP, Armién A, Ariyakumar DS, Sreevatsan S. Identifi-
cation and characterization of a spore-like morphotype in chronically starved
Mycobacterium avium subsp. paratuberculosis cultures. PLoS One (2012)
7(1):e30648. doi:10.1371/journal.pone.0030648

5. Agrawal G, Borody TJ, Chamberlin W. ‘Global warming’ to Mycobacterium
avium subspecies paratuberculosis. Future Microbiol (2014) 9(7):829–32.
doi:10.2217/fmb.14.52

6. Bhamidi S, Scherman MS, Jones V, Crick DC, Belisle JT, Brennan PJ, et al.
Detailed structural and quantitative analysis reveals the spatial organiza-
tion of the cell walls of in vivo grown Mycobacterium leprae and in vitro
grown Mycobacterium tuberculosis. J Biol Chem (2011) 286(26):23168–77.
doi:10.1074/jbc.M110.210534

7. Niederweis M, Danilchanka O, Huff J, Hoffmann C, Engelhardt H. Mycobac-
terial outer membranes: in search of proteins. Trends Microbiol (2010)
18(3):109–16. doi:10.1016/j.tim.2009.12.005

8. Collins MT. Paratuberculosis: review of present knowledge. Acta Vet Scand
(2003) 44:217–21.

9. Millar D, Ford J, Sanderson J, Withey S, Tizard M, Doran T, et al. IS900
PCR to detect Mycobacterium paratuberculosis in retail supplies of whole
pasteurized‘cows’ milk in England and Wales. Appl Environ Microbiol (1996)
62:3446–52.

10. Ellingson JL, Anderson JL, Koziczkowski JJ, Radcliff RP, Sloan SJ, Allen SE,
et al. Detection of viable Mycobacterium avium subsp. paratuberculosis in retail
pasteurized whole milk by two culture methods and PCR. J Food Prot (2005)
68(5):966–72.

11. Hruska K, Bartos M, Kralik P, Pavlik I. Mycobacterium avium subsp. paratuber-
culosis in powdered infant milk: paratuberculosis in cattle – the public health
problem to be solved. Vet Med Czech (2005) 50(8):327–35.

12. Pickup RW, Rhodes G, Arnott S, Sidi-Boumedine K, Bull TJ, Weightman
A, et al. Mycobacterium avium subsp. paratuberculosis in the catchment
area and water of the River Taff in South Wales, United Kingdom, and
its potential relationship to clustering of Crohn’s disease cases in the city
of Cardiff. Appl Environ Microbiol (2005) 71:2130–9. doi:10.1128/AEM.71.4.
2130-2139.2005

13. Whan L, Ball HJ, Grant IR, Rowe MT. Occurrence of Mycobacterium avium
subsp. paratuberculosis in untreated water in Northern Ireland. Appl Environ
Microbiol (2006) 71:7107–12. doi:10.1128/AEM.71.11.7107-7112.2005

14. Pickup RW, Rhodes G, Bull TJ, Arnott S, Sidi-Boumedine K, Hurley M, et al.
Mycobacterium avium subsp. paratuberculosis in lake catchments, in river
water abstracted for domestic use, and in effluent from domestic sewage
treatment works: diverse opportunities for environmental cycling and human
exposure. Appl Environ Microbiol (2006) 72:4067–77. doi:10.1128/AEM.
02490-05

15. Grewal SK, Rajeev S, Sreevatsan S, Michel FC Jr. Persistence of Mycobacterium
avium subsp. paratuberculosis and other zoonotic pathogens during simulated
composting, manure packing, and liquid storage of dairy manure. Appl Environ
Microbiol (2006) 72:565–74. doi:10.1128/AEM.72.1.565-574.2006

16. Collins MT, Miliotis MD, Bier JW. International Handbook of Foodborne
Pathogens. Boca Raton, FL: CRC Press (2003). 17 p.

17. Kaevska M, Lvoncik S, Lamka J, Pavlik I, Slana I. Spread of Mycobacterium
avium subsp. paratuberculosis through soil and grass on a Mouflon (Ovis
aries) pasture. Curr Microbiol (2014) 69(4):495–500. doi:10.1007/s00284-014-
0618-418

18. Pribylova R, Slana I, Kaevska M, Lamka J, Babak V, Jandak J, et al. Soil and
plant contamination with Mycobacterium avium subsp. paratuberculosis after
exposure to naturally contaminated mouflon feces. Curr Microbiol (2011)
62(5):1405–10. doi:10.1007/s00284-011-9875-7

19. Beumer A, King D, Donohue M, Mistry J, Covert T, Pfaller S. Detec-
tion of Mycobacterium avium subsp. paratuberculosis in drinking water and
biofilms by quantitative PCR. Appl Environ Microbiol (2010) 76(21):7367–70.
doi:10.1128/AEM.00730-10

20. Falkinham JOIII. Factors influencing the chlorine susceptibility of Mycobac-
terium avium, Mycobacterium intracellulare, and Mycobacterium scrofu-
laceum. Appl Environ Microbiol (2003) 69:5685–9. doi:10.1128/AEM.69.9.
5685-5689.2003

21. Falkinham JO III, Norton CD, LeChevallier MW. Factors influencing numbers
of Mycobacterium avium, Mycobacterium intracellulare, and other mycobac-
teria in drinking water distribution systems. Appl Environ Microbiol (2001)
67:1225–31. doi:10.1128/AEM.67.3.1225-1231.2001

22. Vaerewijck MJ, Huys G, Palomino JC, Swings J, Portaels F. Mycobacte-
ria in drinking water distribution systems: ecology and significance for
human health. FEMS Microbiol Rev (2005) 29:911–34. doi:10.1016/j.femsre.
2005.02.001

23. Tatchou-Nyamsi-Konig JA, Dailloux M, Block JC. Survival of Mycobacterium
avium attached to polyethylene terephtalate (PET) water bottles. J Appl Micro-
biol (2009) 106:825–32. doi:10.1111/j.1365-2672.2008.04050.x

24. Grant I, Foddai A, Kunkel B, Collins MT. Detection of viable Mycobacterium
avium subsp. paratuberculosis (MAP) in infant formula. Presented at the 12th
International Colloquium on Paratuberculosis. Parma (2014).

25. Dow CT, Ellingson JL. Detection of Mycobacterium avium ss. Paratubercu-
losis in Blau syndrome tissues. Autoimmune Dis (2010) 20(2010):127692.
doi:10.4061/2010/127692

26. Cossu A, Rosu V, Paccagnini D, Cossu D, Pacifico A, Sechi LA. MAP3738c
and MptD are specific tags of Mycobacterium avium subsp. paratuberculo-
sis infection in type I diabetes mellitus. Clin Immunol (2011) 141(1):49–57.
doi:10.1016/j.clim.2011.05.002

27. Rosu V, Ahmed N, Paccagnini D, Pacifico A, Zanetti S, Sechi LA. Mycobac-
terium avium subspecies paratuberculosis is not associated with type-2 dia-
betes mellitus. Ann Clin Microbiol Antimicrob (2008) 22(7):9. doi:10.1186/
1476-0711-7-9

28. Rosu V, Ahmed N, Paccagnini D, Gerlach G, Fadda G, Hasnain SE, et al. Specific
immunoassays confirm association of Mycobacterium avium Subsp. paratu-
berculosis with type-1 but not type-2 diabetes mellitus. PLoS One (2009)
4(2):e4386. doi:10.1371/journal.pone.0004386

29. Sechi LA, Rosu V, Pacifico A, Fadda G, Ahmed N, Zanetti S. Humoral immune
responses of type 1 diabetes patients to Mycobacterium avium subsp. paratuber-
culosis lend support to the infectious trigger hypothesis. Clin Vaccine Immunol
(2008) 15(2):320–6. doi:10.1128/CVI.00381-07

30. Dow CT. Paratuberculosis and type I diabetes: is this the trigger? Med Hypothe-
ses (2006) 67(4):782–5. doi:10.1016/j.mehy.2006.04.029

31. Masala S, Paccagnini D, Cossu D, Brezar V, Pacifico A, Ahmed N, et al. Anti-
bodies recognizing Mycobacterium avium paratuberculosis epitopes cross-react
with the beta-cell antigen ZnT8 in Sardinian type 1 diabetic patients. PLoS One
(2011) 6(10):e26931. doi:10.1371/journal.pone.0026931

32. Sechi LA, Paccagnini D, Salza S, Pacifico A, Ahmed N, Zanetti S. Mycobac-
terium avium subspecies paratuberculosis bacteremia in type 1 diabetes mel-
litus: an infectious trigger? Clin Infect Dis (2008) 46(1):148–9. doi:10.1086/
524084

33. D’Amore M, Lisi S, Sisto M, Cucci L, Dow CT. Molecular identification of
Mycobacterium avium subspecies paratuberculosis in an Italian patient with
Hashimoto’s thyroiditis and Melkersson-Rosenthal syndrome. J Med Microbiol
(2010) 59(Pt 1):137–9. doi:10.1099/jmm.0.013474-0

34. Sisto M, Cucci L, D’Amore M, Dow TC, Mitolo V, Lisi S. Proposing a rela-
tionship between Mycobacterium avium subspecies paratuberculosis infec-
tion and Hashimoto’s thyroiditis. Scand J Infect Dis (2010) 42(10):787–90.
doi:10.3109/00365541003762306

35. Masala S, Cossu D, Palermo M, Sechi LA. Recognition of zinc transporter 8 and
MAP3865c homologous epitopes by Hashimoto’s thyroiditis subjects from Sar-
dinia: a common target with type 1 diabetes? PLoS One (2014) 9(5):e97621.
doi:10.1371/journal.pone.0097621

36. Pinna A, Masala S, Blasetti F, Maiore I, Cossu D, Paccagnini D, et al. Detec-
tion of serum antibodies cross-reacting with Mycobacterium avium subspecies
paratuberculosis and beta-cell antigen zinc transporter 8 homologous peptides
in patients with high-risk proliferative diabetic retinopathy. PLoS One (2014)
9(9):e107802. doi:10.1371/journal.pone.0107802

37. Cossu D, Cocco E, Paccagnini D, Masala S, Ahmed N, Frau J, et al. Associa-
tion of Mycobacterium avium subsp. paratuberculosis with multiple sclerosis
in Sardinian patients. PLoS One (2011) 6(4):e18482. doi:10.1371/journal.pone.
0018482

38. Cossu D, Mameli G, Masala S, Cocco E, Frau J, Marrosu MG, et al. Evalua-
tion of the humoral response against mycobacterial peptides, homologous to
MOG35-55, in multiple sclerosis patients. J Neurol Sci (2014) 347(1–2):78–81.
doi:10.1016/j.jns.2014.09.023

www.frontiersin.org March 2015 | Volume 6 | Article 96 | 5

http://dx.doi.org/10.1001/jama.1932.02740680019005
http://dx.doi.org/10.1001/jama.1932.02740680019005
http://dx.doi.org/10.1371/journal.pone.0030648
http://dx.doi.org/10.2217/fmb.14.52
http://dx.doi.org/10.1074/jbc.M110.210534
http://dx.doi.org/10.1016/j.tim.2009.12.005
http://dx.doi.org/10.1128/AEM.71.4.2130-2139.2005
http://dx.doi.org/10.1128/AEM.71.4.2130-2139.2005
http://dx.doi.org/10.1128/AEM.71.11.7107-7112.2005
http://dx.doi.org/10.1128/AEM.02490-05
http://dx.doi.org/10.1128/AEM.02490-05
http://dx.doi.org/10.1128/AEM.72.1.565-574.2006
http://dx.doi.org/10.1007/s00284-014-0618-418
http://dx.doi.org/10.1007/s00284-014-0618-418
http://dx.doi.org/10.1007/s00284-011-9875-7
http://dx.doi.org/10.1128/AEM.00730-10
http://dx.doi.org/10.1128/AEM.69.9.5685-5689.2003
http://dx.doi.org/10.1128/AEM.69.9.5685-5689.2003
http://dx.doi.org/10.1128/AEM.67.3.1225-1231.2001
http://dx.doi.org/10.1016/j.femsre.2005.02.001
http://dx.doi.org/10.1016/j.femsre.2005.02.001
http://dx.doi.org/10.1111/j.1365-2672.2008.04050.x
http://dx.doi.org/10.4061/2010/127692
http://dx.doi.org/10.1016/j.clim.2011.05.002
http://dx.doi.org/10.1186/1476-0711-7-9
http://dx.doi.org/10.1186/1476-0711-7-9
http://dx.doi.org/10.1371/journal.pone.0004386
http://dx.doi.org/10.1128/CVI.00381-07
http://dx.doi.org/10.1016/j.mehy.2006.04.029
http://dx.doi.org/10.1371/journal.pone.0026931
http://dx.doi.org/10.1086/524084
http://dx.doi.org/10.1086/524084
http://dx.doi.org/10.1099/jmm.0.013474-0
http://dx.doi.org/10.3109/00365541003762306
http://dx.doi.org/10.1371/journal.pone.0097621
http://dx.doi.org/10.1371/journal.pone.0107802
http://dx.doi.org/10.1371/journal.pone.0018482
http://dx.doi.org/10.1371/journal.pone.0018482
http://dx.doi.org/10.1016/j.jns.2014.09.023
http://www.frontiersin.org
http://www.frontiersin.org/Mucosal_Immunity/archive


Sechi and Dow MAP beyond Crohn’s disease

39. Cossu D, Masala S, Cocco E, Paccagnini D, Tranquilli S, Frau J, et al. Asso-
ciation of Mycobacterium avium subsp. paratuberculosis and SLC11A1 poly-
morphisms in Sardinian multiple sclerosis patients. J Infect Dev Ctries (2013)
7(3):203–7. doi:10.3855/jidc.2737

40. Gazouli M, Sechi L, Paccagnini D, Sotgiu S,Arru G, Nasioulas G, et al. NRAMP1
polymorphism and viral factors in Sardinian multiple sclerosis patients. Can
J Neurol Sci (2008) 35(4):491–4. doi:10.1017/S0317167100009173

41. Ates O, Kurt S, Bozkurt N, Karaer H. NRAMP1 (SLC11A1) variants: genetic
susceptibility to multiple sclerosis. J Clin Immunol (2010) 30(4):583–6.
doi:10.1007/s10875-010-9422-5

42. Cossu D, Masala S, Cocco E, Paccagnini D, Frau J, Marrosu MG, et al.
Are Mycobacterium avium subsp. paratuberculosis and Epstein-Barr virus
triggers of multiple sclerosis in Sardinia? Mult Scler (2012) 18(8):1181–4.
doi:10.1177/1352458511433430

43. Mameli G, Cossu D, Cocco E, Masala S, Frau J, Marrosu MG, et al. Epstein-
Barr virus and Mycobacterium avium subsp. paratuberculosis peptides are
cross recognized by anti-myelin basic protein antibodies in multiple sclero-
sis patients. J Neuroimmunol (2014) 270(1–2):51–5. doi:10.1016/j.jneuroim.
2014.02.013

44. Mameli G, Cossu D, Cocco E, Masala S, Frau J, Marrosu MG, et al. EBNA-1 IgG
titers in Sardinian multiple sclerosis patients and controls. J Neuroimmunol
(2013) 264(1–2):120–2. doi:10.1016/j.jneuroim.2013.07.017

45. Cossu D, Masala S, Frau J, Mameli G, Marrosu MG, Cocco E, et al. Anti-
genic epitopes of MAP2694 homologous to T-cell receptor gamma-chain are
highly recognized in multiple sclerosis Sardinian patients. Mol Immunol (2014)
57(2):138–40. doi:10.1016/j.molimm.2013.09.001

46. Cossu D, Masala S, Sechi LA. A Sardinian map for multiple sclerosis. Future
Microbiol (2013) 8(2):223–32. doi:10.2217/fmb.12.135

47. Soares RM, Dias AT, De Castro SB, Alves CC, Evangelista MG, Da Silva LC, et al.
Optical neuritis induced by different concentrations of myelin oligodendrocyte
glycoprotein presents different profiles of the inflammatory process. Autoim-
munity (2013) 46(7):480–5. doi:10.3109/08916934.2013.796938

48. Cossu D,Mameli G,Galleri G,Cocco E,Masala S,Frau J, et al. Human interferon
regulatory factor 5 homologous epitopes of Epstein-Barr virus and Mycobac-
terium avium subsp. paratuberculosis induce a specific humoral and cellular
immune response in multiple sclerosis patients. Mult Scler (2014) 12.

49. Frau J, Cossu D, Coghe G, Lorefice L, Fenu G, Porcu G, et al. Role of
interferon-beta in Mycobacterium avium subspecies paratuberculosis anti-
body response in Sardinian MS patients. J Neurol Sci (2015) 349(1–2):249–50.
doi:10.1016/j.jns.2015.01.004

50. Blau B. Familial granulomatous arthritis, iritis, and rash. J Pediatr (1985)
107(5):689–93. doi:10.1016/S0022-3476(85)80394-2

51. Hampe J, Grebe J, Nikolaus S, Solberg C, Croucher PJ, Mascheretti S, et al. Asso-
ciation of NOD2 (CARD 15) genotype with clinical course of Crohn’s disease:
a cohort study. Lancet (2002) 359(9318):1661–5. doi:10.1016/S0140-6736(02)
08590-2

52. Inohara N, Ogura Y, Fontalba A, Gutierrez O, Pons F, Crespo J, et al. Host
recognition of bacterial muramyl dipeptide mediated through NOD2: impli-
cations for Crohn’s disease. J Biol Chem (2003) 278(8):5509–12. doi:10.1074/
jbc.C200673200

53. Hansen JM, Golchin SA, Veyrier FJ, Domenech P, Boneca IG, Azad AK, et al.
N-glycolylated peptidoglycan contributes to the immunogenicity but not path-
ogenicity of Mycobacterium tuberculosis. J Infect Dis (2014) 209(7):1045–54.
doi:10.1093/infdis/jit622

54. Kanazawa N, Okafuji I, Kambe N, Nishikomori R, Nakata-Hizume M, Nagai S,
et al. Early-onset sarcoidosis and CARD15 mutations with constitutive nuclear
factor-κB activation: common genetic etiology with Blau syndrome. Blood
(2005) 105(3):1195–7. doi:10.1182/blood-2004-07-2972

55. Miceli-Richard C, Lesage S, Rybojad M, Prieur AM, Manouvrier-Hanu S,
Häfner R, et al. CARD15 mutations in Blau syndrome. Nat Genet (2001)
29(1):19–20. doi:10.1038/ng720

56. Wang X, Kuivaniemi H, Bonavita G, Mutkus L, Mau U, Blau E, et al. CARD15
mutations in familial granulomatosis syndromes: a study of the original Blau
syndrome kindred and other families with large-vessel arteritis and cranial
neuropathy. Arthritis Rheum (2002) 46(11):3041–5. doi:10.1002/art.10618

57. Hugot J-P, Chamaillard M, Zouali H, Lesage S, Cézard JP, Belaiche J, et al. Asso-
ciation of NOD2 leucine-rich repeat variants with susceptibility to Crohn’s
disease. Nature (2001) 411(6837):599–603. doi:10.1038/35079107

58. Lesage S, Zouali H, Cézard JP, Colombel JF, Belaiche J, Almer S, et al.
CARD15/NOD2 mutational analysis and genotype-phenotype correlation in
612 patients with inflammatory bowel disease. Am J Hum Genet (2002)
70(4):845–57. doi:10.1086/339432

59. Sechi LA, Gazouli M, Ikonomopoulos J, Lukas JC, Scanu AM, Ahmed N, et al.
Mycobacterium avium subsp. paratuberculosis, genetic susceptibility to Crohn’s
disease, and Sardinians: the way ahead. J Clin Microbiol (2005) 43(10):5275–7.
doi:10.1128/JCM.43.10.5275-5277.2005

60. Rose CD, Doyle TM, McIlvain-Simpson G, Coffman JE, Rosenbaum JT, Davey
MP, et al. Blau syndrome mutation of CARD15/NOD2 in sporadic early onset
granulomatous arthritis. J Rheumatol (2005) 32(2):373–5.

61. Wouters CH, Maes A, Foley KP, Bertin J, Rose CD. Blau syndrome, the proto-
typic auto-inflammatory granulomatous disease. Pediatr Rheumatol Online J
(2014) 12:33. doi:10.1186/1546-0096-12-33

62. Lacher M, Helmbrecht J, Schroepf S, Koletzko S, Ballauff A, Classen M,
et al. NOD2 mutations predict the risk for surgery in pediatric-onset
Crohn’s disease. J Pediatr Surg (2010) 45(8):1591–7. doi:10.1016/j.jpedsurg.
2009.10.046

63. Franke A, McGovern DP, Barrett JC, Wang K, Radford-Smith GL, Ahmad
T, et al. Genome-wide meta-analysis increases to 71 the number of con-
firmed Crohn’s disease susceptibility loci. Nat Genet (2010) 42(12):1118–25.
doi:10.1038/ng.717

64. Sechi LA, Gazouli M, Sieswerda LE, Molicotti P, Ahmed N, Ikonomopoulos
J, et al. Relationship between Crohn’s disease, infection with Mycobacterium
avium subspecies paratuberculosis and SLC11A1 gene polymorphisms in Sar-
dinian patients. World J Gastroenterol (2006) 12(44):7161–4.

65. Canonne-Hergaux F, Gruenheid S, Govoni G, Gros P. (1999) The Nramp1 pro-
tein and its role in resistance to infection and macrophage function. Proc Assoc
Am Physicians (1999) 111:283–9. doi:10.1046/j.1525-1381.1999.99236.x

66. Lapham AS, Phillips ES, Barton CH. Transcriptional control of Nramp1: a
paradigm for the repressive action of c-Myc. Biochem Soc Trans (2004) 32(Pt
6):1084–6. doi:10.1042/BST0321084

67. Wyllie S, Seu P, Goss JA. The natural resistance-associatedmacrophage protein
1 Slc11a1 (formerly Nramp1) and iron metabolism in macrophages. Microbes
Infect (2002) 4(3):351–9. doi:10.1016/S1286-4579(02)01548-4

68. Hackam DJ, Rotstein OD, Zhang W, Gruenheid S, Gros P, Grinstein S. Host
resistance to intracellular infection: mutation of natural resistance-associated
macrophage protein 1 (Nramp1) impairs phagosomal acidification. J Exp Med
(1998) 188(2):351–64. doi:10.1084/jem.188.2.351

69. Dubaniewicz A, Jamieson SE, Dubaniewicz-Wybieralska M, Fakiola M, Nancy
Miller E, Blackwell JM. Association between SLC11A1 (formerly NRAMP1)
and the risk of sarcoidosis in Poland. Eur J Hum Genet (2005) 13(7):829–34.
doi:10.1038/sj.ejhg.5201370

70. StienstraY,van der Werf TS,Oosterom E,Nolte IM,van der Graaf WT,Etuaful S,
et al. Susceptibility to Buruli ulcer is associated with the SLC11A1 (NRAMP1)
D543N polymorphism. Genes Immun (2006) 7(3):185–9. doi:10.1038/sj.gene.
6364281

71. Ruiz-Larrañaga O, Garrido JM, Manzano C, Iriondo M, Molina E, Gil A, et al.
Identification of single nucleotide polymorphisms in the bovine solute car-
rier family 11 member 1 (SLC11A1) gene and their association with infec-
tion by Mycobacterium avium subspecies paratuberculosis. J Dairy Sci (2010)
93(4):1713–21. doi:10.3168/jds.2009-2438

72. Korou LM, Liandris E, Gazouli M, Ikonomopoulos J. Investigation of the asso-
ciation of the SLC11A1 gene with resistance/sensitivity of goats (Capra hir-
cus) to paratuberculosis. Vet Microbiol (2010) 144(3–4):353–8. doi:10.1016/j.
vetmic.2010.01.009

73. Purdie AC, Plain KM, Begg DJ, de Silva K, Whittington RJ. Candidate gene and
genome-wide association studies of Mycobacterium avium subsp. paratuber-
culosis infection in cattle and sheep: a review. Comp Immunol Microbiol Infect
Dis (2011) 34(3):197–208. doi:10.1016/j.cimid.2010.12.003

74. Roupie V, Rosseels V, Piersoel V, Zinniel DK, Barletta RG, Huygen K. Genetic
resistance of mice to Mycobacterium paratuberculosis is influenced by Slc11a1
at the early but not at the late stage of infection. Infect Immun (2008)
76(5):2099–105. doi:10.1128/IAI.01137-07

75. Blackwell JM, Searle S, Mohamed H, White JK. Divalent cation transport
and susceptibility to infectious and autoimmune disease: continuation of the
Ity/Lsh/Bcg/Nramp1/Slc11a1 gene story. Immunol Lett (2003) 85(2):197–203.
doi:10.1016/S0165-2478(02)00231-6

Frontiers in Immunology | Mucosal Immunity March 2015 | Volume 6 | Article 96 | 6

http://dx.doi.org/10.3855/jidc.2737
http://dx.doi.org/10.1017/S0317167100009173
http://dx.doi.org/10.1007/s10875-010-9422-5
http://dx.doi.org/10.1177/1352458511433430
http://dx.doi.org/10.1016/j.jneuroim.2014.02.013
http://dx.doi.org/10.1016/j.jneuroim.2014.02.013
http://dx.doi.org/10.1016/j.jneuroim.2013.07.017
http://dx.doi.org/10.1016/j.molimm.2013.09.001
http://dx.doi.org/10.2217/fmb.12.135
http://dx.doi.org/10.3109/08916934.2013.796938
http://dx.doi.org/10.1016/j.jns.2015.01.004
http://dx.doi.org/10.1016/S0022-3476(85)80394-2
http://dx.doi.org/10.1016/S0140-6736(02)08590-2
http://dx.doi.org/10.1016/S0140-6736(02)08590-2
http://dx.doi.org/10.1074/jbc.C200673200
http://dx.doi.org/10.1074/jbc.C200673200
http://dx.doi.org/10.1093/infdis/jit622
http://dx.doi.org/10.1182/blood-2004-07-2972
http://dx.doi.org/10.1038/ng720
http://dx.doi.org/10.1002/art.10618
http://dx.doi.org/10.1038/35079107
http://dx.doi.org/10.1086/339432
http://dx.doi.org/10.1128/JCM.43.10.5275-5277.2005
http://dx.doi.org/10.1186/1546-0096-12-33
http://dx.doi.org/10.1016/j.jpedsurg.2009.10.046
http://dx.doi.org/10.1016/j.jpedsurg.2009.10.046
http://dx.doi.org/10.1038/ng.717
http://dx.doi.org/10.1046/j.1525-1381.1999.99236.x
http://dx.doi.org/10.1042/BST0321084
http://dx.doi.org/10.1016/S1286-4579(02)01548-4
http://dx.doi.org/10.1084/jem.188.2.351
http://dx.doi.org/10.1038/sj.ejhg.5201370
http://dx.doi.org/10.1038/sj.gene.6364281
http://dx.doi.org/10.1038/sj.gene.6364281
http://dx.doi.org/10.3168/jds.2009-2438
http://dx.doi.org/10.1016/j.vetmic.2010.01.009
http://dx.doi.org/10.1016/j.vetmic.2010.01.009
http://dx.doi.org/10.1016/j.cimid.2010.12.003
http://dx.doi.org/10.1128/IAI.01137-07
http://dx.doi.org/10.1016/S0165-2478(02)00231-6
http://www.frontiersin.org/Mucosal_Immunity
http://www.frontiersin.org/Mucosal_Immunity/archive


Sechi and Dow MAP beyond Crohn’s disease

76. Hatta M, Ratnawati, Tanaka M, Ito J, Shirakawa T, Kawabata M.
NRAMP1/SLC11A1 gene polymorphisms and host susceptibility to Mycobac-
terium tuberculosis and M. leprae in South Sulawesi, Indonesia. Southeast Asian
J Trop Med Public Health (2010) 41(2):386–94.

77. Bellamy R, Ruwende C, Corrah T, McAdam KP, Whittle HC, Hill AV. Variations
in the NRAMP1 gene and susceptibility to tuberculosis in West Africans. N Engl
J Med (1998) 338:640–4. doi:10.1056/NEJM199803053381002

78. Ates O, Dalyan L, Musellim B, Hatemi G, Turker H, Ongen G, et al. NRAMP1
(SLC11A1) gene polymorphisms that correlate with autoimmune versus
infectious disease susceptibility in tuberculosis and rheumatoid arthritis. Int
J Immunogenet (2009) 36:15–9. doi:10.1111/j.1744-313X.2008.00814.x

79. Kotze MJ, de Villiers JN, Rooney RN, Grobbelaar JJ, Mansvelt EP, Bouwens CS,
et al. Analysis of the NRAMP1 gene implicated in iron transport: association
with multiple sclerosis and age effects. Blood Cells Mol Dis (2001) 27:44–53.
doi:10.1006/bcmd.2000.0349

80. Gazouli M, Atsaves V, Mantzaris G, Economou M, Nasioulas G, Evangelou K,
et al. Role of functional polymorphisms of NRAMP1 gene for the develop-
ment of Crohn’s disease. Inflamm Bowel Dis (2008) 14:1323–30. doi:10.1002/
ibd.20488

81. Kotlowski R, Bernstein CN, Silverberg MS, Krause DO. Population-based case-
control study of alpha 1-antitrypsin and SLC11A1 in Crohn’s disease and ulcer-
ative colitis. Inflamm Bowel Dis (2008) 14:1112–7. doi:10.1002/ibd.20425

82. Paccagnini D, Sieswerda L, Rosu V, Masala S, Pacifico A, Gazouli M, et al.
Linking chronic infection and autoimmune diseases: Mycobacterium avium
subspecies par atuberculosis, SLC11A1 polymorphisms and type-1 diabetes
mellitus. PLoS One (2009) 214(9):e7109. doi:10.1371/journal.pone.0007109

83. Masala S, Cossu D, Pacifico A, Molicotti P, Sechi LA. Sardinian type 1 diabetes
patients, transthyretin and Mycobacterium avium subspecies paratuberculosis
infection. Gut Pathog (2012) 4(1):24. doi:10.1186/1757-4749-4-24

84. Takahashi K, Satoh J, Kojima Y, Negoro K, Hirai M, Hinokio Y, et al. Pro-
moter polymorphism of SLC11A1 (formerly NRAMP1) confers susceptibility
to autoimmune type 1 diabetes mellitus in Japanese. Tissue Antigens (2004)
63(3):231–6. doi:10.1111/j.1399-0039.2004.000172.x

85. Oldstone MB. Molecular mimicry and autoimmune disease. Cell (1987)
50(6):819–20. doi:10.1016/0092-8674(87)90507-1

86. Raska M, Weigl E. Heat shock proteins in autoimmune diseases. Biomed
Pap Med Fac Univ Palacky Olomouc Czech Repub (2005) 149(2):243–9.
doi:10.5507/bp.2005.033

87. Guilherme L, Faé K, Oshiro SE, Kalil J. Molecular pathogenesis of rheumatic
fever and rheumatic heart disease. Expert Rev Mol Med (2005) 7(28):1–15.
doi:10.1017/S146239940501015X

88. Kaplan MH, SVEC KH. Immunologic relation of streptococcal and tissue anti-
gens. III. Presence in human sera of streptococcal antibody cross-reactive with
heart tissue. Association with streptococcal infection, rheumatic fever, and
glomerulonephritis. J Exp Med (1964) 119:65166. doi:10.1084/jem.119.4.651

89. Eisenbarth GS. Type I diabetes mellitus. A chronic autoimmune disease. N Engl
J Med (1986) 314(21):1360–8. doi:10.1056/NEJM198605223142106

90. Davis W, Madsen-Bouterse S. Crohn’s disease and Mycobacterium avium
subsp. paratuberculosis: the need for a study is long overdue. Vet Immunol
Immunopathol (2012) 145(1–2):1–6. doi:10.1016/j.vetimm.2011.12.005

91. Masala S, Zedda MA, Cossu D, Ripoli C, Palermo M, Sechi LA. Zinc transporter
8 and MAP3865c homologous epitopes are recognized at T1D onset in Sardin-
ian children. PLoS One (2013) 8(5):e63371. doi:10.1371/journal.pone.0063371

92. Masala S, Cossu D, Piccinini S, Rapini N, Massimi A, Porzio O, et al. Recognition
of zinc transporter 8 and MAP3865c homologous epitopes by new-onset type
1 diabetes children from continental Italy. Acta Diabetol (2014) 51(4):577–85.
doi:10.1007/s00592-014-0558-2

93. Masala S, Cossu D, Piccinini S, Rapini N, Mameli G, Manca Bitti ML, et al.
Proinsulin and MAP3865c homologous epitopes are a target of antibody
response in new-onset type 1 diabetes children from continental Italy. Pediatr
Diabetes J (2015). (in press).

94. Rani PS, Sechi LA, Ahmed N. Mycobacterium avium subsp. paratuberculosis as
a trigger of type-1 diabetes: destination Sardinia, or beyond? Gut Pathog (2010)
2(1):1. doi:10.1186/1757-4749-2-1

95. Scotto M, Afonso G, Larger E, Raverdy C, Lemonnier FA, Carel JC, et al.
Zinc transporter (ZnT)8(186-194) is an immunodominant CD8+ T cell epi-
tope in HLA-A2+ type 1 diabetic patients. Diabetologia (2012) 55(7):2026–31.
doi:10.1007/s00125-012-2543-z

96. Cossu A, Ferrannini E, Fallahi P, Antonelli A, Sechi LA. Antibodies recognizing
specific Mycobacterium avium subsp. paratuberculosis’s MAP3738c protein in
type 1 diabetes mellitus children are associated with serum Th1 (CXCL10)
chemokine. Cytokine (2013) 61(2):337–9. doi:10.1016/j.cyto.2012.11.008

97. Kawasaki E. Type 1 diabetes and autoimmunity. Clin Pediatr Endocrinol (2014)
23(4):99–105. doi:10.1297/cpe.23.99

98. Rogowicz-Frontczak A, Zozuliłska-Ziołkiewicz D, Litwinowicz M, Niedzwiecki
P, Wyka K, Wierusz-Wysocka B. Are zinc transporter type 8 antibodies a marker
of autoimmune thyroiditis in non-obese adults with new-onset diabetes? Eur
J Endocrinol (2014);170(4):651–8. doi:10.1530/EJE-13-0901

99. Parsell DA, Lindquist S. The function of heat shock proteins in stress tolerance:
degradation and reactivation of damaged proteins. Annu Rev Genet (1993)
27:437–96. doi:10.1146/annurev.ge.27.120193.002253

100. Lamb JR, Young DB. T cell recognition of stress proteins. A link between infec-
tious and autoimmune disease. Mol Biol Med (1990) 7(4):311–21.

101. Jarjour WN, Jeffries BD, Davis JS IV, Welch WJ, Mimura T, Winfield JB. Autoan-
tibodies to human stress proteins. A survey of various rheumatic and other
inflammatory diseases. Arthritis Rheum (1991) 34(9):1133–8. doi:10.1002/art.
1780340909

102. Moudgil KD, Chang TT, Eradat H, Chen AM, Gupta RS, Brahn E, et al. Diver-
sification of T cell responses to carboxy-terminal determinants within the 65
kD heat-shock protein is involved in regulation of autoimmune arthritis. J Exp
Med (1997) 185(7):1307–16. doi:10.1084/jem.185.7.1307

103. Cossu D, Masala S, Frau J, Cocco E, Marrosu MG, Sechi LA. Anti Mycobacterium
avium subsp. paratuberculosis heat shock protein 70 antibodies in the sera of
Sardinian patients with multiple sclerosis. J Neurol Sci (2013) 335(1–2):131–3.
doi:10.1016/j.jns.2013.09.011

104. Quayle AJ, Wilson KB, Li SG, Kjeldsen-Kragh J, Oftung F, Shinnick T, et al. Pep-
tide recognition, T cell receptor usage and HLA restriction elements of human
heat-shock protein (hsp) 60 and mycobacterial 65 kDa hsp-reactive T cell
clones from rheumatoid synovial fluid. Eur J Immunol (1992) 22(5):1315–22.
doi:10.1002/eji.1830220529

105. Miyata M, Kogure A, Sato H, Kodama E, Watanabe H, Ohira H, et al. Detec-
tion of antibodies to 65 KD heat shock protein and to human superoxide
dismutase in autoimmune hepatitis-molecular mimicry between 65 KD heat
shock protein and superoxide dismutase. Clin Rheumatol (1995) 14(6):673–7.
doi:10.1007/BF02207935

106. Vilagut L, Pares A, Vinas O, Vila J, Jiménez de Anta MT, Rodés J. Antibodies
to mycobacterial 65 kD heat shock protein cross-react with the main mito-
chondrial antigens in patients with primary biliary cirrhosis. Eur J Clin Invest
(1997) 27(8):667–72. doi:10.1046/j.1365-2362.1997.1690724.x

107. Danieli MG, Candela M, Ricciatti AM, Reginelli R, Danieli G, Cohen IR, et al.
Antibodies to mycobacterial 65 kDa heat shock protein in systemic sclerosis
(scleroderma). J Autoimmun (1992) 5(4):443–5. doi:10.1016/0896-8411(92)
90004-A

108. Yokota S, Tsubaki S, Kuriyama T, Shimizu H, Ibe M, Mitsuda T, et al. Presence in
Kawasaki disease of antibodies to mycobacterial heatshock protein HSP65 and
autoantibodies to epitopes of human HSP65 cognate antigen. Clin Immunol
Immunopathol (1993) 67:163–70. doi:10.1006/clin.1993.1060

109. Direskeneli H, Saruhan-Direskeneli G. The role of heat shock proteins in
Behcet’s disease. Clin Exp Rheumatol (2003) 21(Suppl 30):S44–8.

110. Aggarwal A, Chag M, Sinha N, Naik S. Takayasu’s arteritis: role of Mycobac-
terium tuberculosis and its 65 kDa heat shock protein. Int J Cardiol (1996)
55(1):49–55. doi:10.1016/0167-5273(96)02660-5

111. Hermon-Taylor J, Bull T. Crohn’s disease caused by Mycobacterium avium sub-
species paratuberculosis: a public health tragedy whose resolution is long over-
due. J Med Microbiol (2002) 51(1):3–6.

112. Hermon-Taylor J. Treatment with drugs active against Mycobacterium avium
subspecies paratuberculosis can heal Crohn’s disease: more evidence for a
neglected public health tragedy. Dig Liver Dis (2002) 34(1):9–12. doi:10.1016/
S1590-8658(02)80052-4

113. De Buck J, Shaykhutdinov R, Barkema HW, Vogel HJ. Metabolomic
profiling in cattle experimentally infected with Mycobacterium avium
subsp. paratuberculosis. PLoS One (2014) 9(11):e111872. doi:10.1371/journal.
pone.0111872

114. Gitlin L, Borody TJ, Chamberlin W, Campbell J. Mycobacterium avium ss
paratuberculosis-associated diseases: piecing the Crohn’s puzzle together. J Clin
Gastroenterol (2012) 46(8):649–55. doi:10.1097/MCG.0b013e31825f2bce

www.frontiersin.org March 2015 | Volume 6 | Article 96 | 7

http://dx.doi.org/10.1056/NEJM199803053381002
http://dx.doi.org/10.1111/j.1744-313X.2008.00814.x
http://dx.doi.org/10.1006/bcmd.2000.0349
http://dx.doi.org/10.1002/ibd.20488
http://dx.doi.org/10.1002/ibd.20488
http://dx.doi.org/10.1002/ibd.20425
http://dx.doi.org/10.1371/journal.pone.0007109
http://dx.doi.org/10.1186/1757-4749-4-24
http://dx.doi.org/10.1111/j.1399-0039.2004.000172.x
http://dx.doi.org/10.1016/0092-8674(87)90507-1
http://dx.doi.org/10.5507/bp.2005.033
http://dx.doi.org/10.1017/S146239940501015X
http://dx.doi.org/10.1084/jem.119.4.651
http://dx.doi.org/10.1056/NEJM198605223142106
http://dx.doi.org/10.1016/j.vetimm.2011.12.005
http://dx.doi.org/10.1371/journal.pone.0063371
http://dx.doi.org/10.1007/s00592-014-0558-2
http://dx.doi.org/10.1186/1757-4749-2-1
http://dx.doi.org/10.1007/s00125-012-2543-z
http://dx.doi.org/10.1016/j.cyto.2012.11.008
http://dx.doi.org/10.1297/cpe.23.99
http://dx.doi.org/10.1530/EJE-13-0901
http://dx.doi.org/10.1146/annurev.ge.27.120193.002253
http://dx.doi.org/10.1002/art.1780340909
http://dx.doi.org/10.1002/art.1780340909
http://dx.doi.org/10.1084/jem.185.7.1307
http://dx.doi.org/10.1016/j.jns.2013.09.011
http://dx.doi.org/10.1002/eji.1830220529
http://dx.doi.org/10.1007/BF02207935
http://dx.doi.org/10.1046/j.1365-2362.1997.1690724.x
http://dx.doi.org/10.1016/0896-8411(92)90004-A
http://dx.doi.org/10.1016/0896-8411(92)90004-A
http://dx.doi.org/10.1006/clin.1993.1060
http://dx.doi.org/10.1016/0167-5273(96)02660-5
http://dx.doi.org/10.1016/S1590-8658(02)80052-4
http://dx.doi.org/10.1016/S1590-8658(02)80052-4
http://dx.doi.org/10.1371/journal.pone.0111872
http://dx.doi.org/10.1371/journal.pone.0111872
http://dx.doi.org/10.1097/MCG.0b013e31825f2bce
http://www.frontiersin.org
http://www.frontiersin.org/Mucosal_Immunity/archive


Sechi and Dow MAP beyond Crohn’s disease

115. Feller M, Huwiler K, Schoepfer A, Shang A, Furrer H, Egger M. Long-
term antibiotic treatment for Crohn’s disease: systematic review and meta-
analysis of placebo-controlled trials. Clin Infect Dis (2010) 50(4):473–80.
doi:10.1086/649923

116. Available from: http://clinicaltrials.gov/ct2/show/NCT01951326?term=rhb-
104&rank=2 last viewed 11.12.14

117. Available from: http://clinicaltrials.gov/ct2/show/NCT01717664?term=rhb-
104&rank=1 last viewed 11.12.14

Conflict of Interest Statement: The authors declare that the research was conducted
in the absence of any commercial or financial relationships that could be construed
as a potential conflict of interest.

Received: 25 November 2014; accepted: 18 February 2015; published online: 04 March
2015.
Citation: Sechi LA and Dow CT (2015) Mycobacterium avium ss. paratuberculosis
Zoonosis – The Hundred Year War – Beyond Crohn’s Disease. Front. Immunol. 6:96.
doi: 10.3389/fimmu.2015.00096
This article was submitted to Mucosal Immunity, a section of the journal Frontiers in
Immunology.
Copyright © 2015 Sechi and Dow. This is an open-access article distributed under the
terms of the Creative Commons Attribution License (CC BY). The use, distribution or
reproduction in other forums is permitted, provided the original author(s) or licensor
are credited and that the original publication in this journal is cited, in accordance with
accepted academic practice. No use, distribution or reproduction is permitted which
does not comply with these terms.

Frontiers in Immunology | Mucosal Immunity March 2015 | Volume 6 | Article 96 | 8

http://dx.doi.org/10.1086/649923
http://clinicaltrials.gov/ct2/show/NCT01951326?term=rhb-104&rank=2
http://clinicaltrials.gov/ct2/show/NCT01951326?term=rhb-104&rank=2
http://clinicaltrials.gov/ct2/show/NCT01717664?term=rhb-104&rank=1
http://clinicaltrials.gov/ct2/show/NCT01717664?term=rhb-104&rank=1
http://dx.doi.org/10.3389/fimmu.2015.00096
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Mucosal_Immunity
http://www.frontiersin.org/Mucosal_Immunity/archive

	Mycobacterium avium ss. paratuberculosis Zoonosis – The Hundred Year War – Beyond Crohn's Disease
	Introduction
	Mycobacterium avium ss. paratuberculosis
	MAP and human exposure
	MAP and human diseases
	Genetics
	CARD15
	CARD15, Blau syndrome, and Crohn's disease
	SLC11A1
	SLC11A1 in infectious and autoimmune disease
	Molecular mimicry

	MAP and type 1 diabetes
	MAP and autoimmune thyroiditis
	Heat shock proteins
	MAP and multiple sclerosis
	The future – MAP and human disease
	Acknowledgments
	References


